Effect of Storage Temperature on Weight Loss, Chemical Composition, Microbiological Properties and Sensory Characteristics of White Cheese (Gibna Bayda)

Osman A.O. El Owni and Omer I. A. Hamed

Department of Dairy Production, Faculty of Animal Production, University of Khartoum, Shambat, P.O. Box 32, Khartoum North, Sudan.

Department of Animal Production Faculty of Agriculture, University of Zalingei, P.O. Box 6, Zalingei, Sudan

Abstract: Effect of storage temperature on weight loss, chemical composition, microbiological properties and sensory characteristics was studied. The cheese was made from fresh raw cow’s milk with 6% salt kept in ant-acid containers with its whey and stored at room (35-37°C) and refrigerator (7°C) temperatures for periods of 0, 60, 120, 180 and 240 days. Weight loss, chemical, microbiological and sensory characteristics were determined after each period. Storage temperature significantly (P<0.05) affected weight loss and chemical composition of the cheese. Weight loss, titratable acidity, total solids, crude protein and fat contents of the cheese samples stored at room temperature (35-37°C) were significantly (P<0.001) higher than those kept at refrigerator (7°C). Soluble proteins and ash contents of the samples stored at refrigerator were significantly (P<0.001) higher than those kept at room temperature. Volatile fatty acids, tyrosine and tryptophane contents were higher in cheese samples stored at room temperature. Total bacterial count of the cheese stored at room temperature was lower than those stored at refrigerator at the end of storage period. Coliforms and E. coli counts were not detected at day 60 for the cheese samples stored at room temperature. Staphylococcus aureus was completely disappeared at day 60 and throughout the storage. Moulds and yeasts were found to decrease in number in cheese stored at refrigerator and they disappeared in samples kept at room temperature at day 120. Color and texture of the cheese stored at refrigerator had higher scores than that kept at room temperature. The flavor and saltiness of the cheese samples were not affected by the storage temperature. Weight loss, chemical composition, microbial contents and sensory characteristics (ripening indices) of Gibna Bayda were significantly (P<0.001) affected by storage temperature. Storage of Gibna Bayda samples at room temperature decreased coliforms, E. coli, psychrotrophic bacteria, yeast and moulds counts, while it increased total bacterial count.

Key words: Gibna Bayda, storage temperature, weight loss, chemical composition, microbial properties, ripening indices.

INTRODUCTION

In Sudan milk is mainly produced on village farms and rural areas [18]. Sudanese white cheese (Gibna Bayda) is consumed fresh or stored for short period of time [19,20]. Made from full fat raw milk, high concentrations of sodium chloride are added before renneting [21]. Salt concentration and storage conditions were significantly (P<0.05) affected weight loss, chemical composition microbial content and sensory characteristics of Sudanese white cheese [22]. Storage temperature affects growth rate of microbes of desirable flora, activity of their enzymes, rennet and starter bacteria [23]. The microflora was dominated by lactic acid bacteria (LAB) with evident mould and yeast growth. The average microbiological properties were 9.71 log cfu/ml for total bacterial count, 3.28 log MPN/ml coliforms, 0.70 log MPN/ml E. coli, 1.73 log cfu/ml Staphylococcus aureus, 5.06 log cfu/ml lactic acid bacteria, 3.72 log cfu/ml streptococci and 4.46 log cfu/ml for yeast and mould counts [24]. Collombo et al. [25] reported that low temperature was more effective for prolonged cheese storage than high temperature. Crude protein, total solids and ash contents significantly (P<0.05) increased from day zero to day 120 then decreased onwards. Soluble proteins, tyrosine, tryptophane and volatile Fatty Acids (VFA) increased [26]. Cheese made from raw milk received highest organoleptic scores after 60 days at room temperature and after 90 days at refrigerator temperature [27]. Texture, flavour and colour of the cheese samples significantly (P<0.05) improved during storage until day 120 then decreased in scores there after [28].

Corresponding Author: Osman A.O. El Owni, Department of Dairy Production, Faculty of Animal Production, University of Khartoum, Shambat, P.O. Box 32, Khartoum North, Sudan
The objective of this study was to investigate the effect of storage temperature on the weight loss, chemical composition, microbiological and sensory characteristics of the white soft cheese.

MATERIALS AND METHODS

Cheese Manufacture: Studies on the effect of storage temperature on chemical, microbiological and sensory characteristics of Gibna Bayda (white cheese) were carried out during January 2004 to September 2004 in the Dairy Technology laboratory of the Department of Dairy Production, Faculty of Animal Production, University of Khartoum. The Gibna Bayda manufactured with 6 % salt was prepared from fresh raw cow’s milk. The salt was added to the milk before renneting and rennet (Chr. Hansens Lab., Cobenhagen, Denmark) were added at the rate of one tablet per 50 liters of milk at 40°C. The milk was stirred for 10 minutes and left undisturbed till coagulation occurred. The curd was cut and left for 30 minutes for the whey drainage. The whey was collected from each type of cheese to be used for its preservation. The cut curd was transferred to clean wooden mould lined with clean cloth and pressed with 36 kg weight overnight. Next day each cheese was removed from the mould and cut into small cubes (5x 5 x 5 cm.). The whey of each salt concentration was boiled for 5 minutes for preservation of the particular cheese samples. Cheese samples of each concentration were packed in anti-acid cans and plastic containers in triplicates and stored at room and refrigerator temperatures for periods of 0, 60, 120, 180 and 240 days. Weight loss, chemical, microbiological analysis and sensory characteristics were determined after each storage period.

Chemical Analysis: Titratable acidity, total solids, crude proteins and ash contents were determined according to AOAC [6]. Fat contents were determined according to Foley et al. [13]. Soluble proteins were determined according to Ling [23]. Volatile fatty acids were determined according to Kosikowski [21]. Tyrosine and tryptophane contents were determined by the method of Vakaleris and Price [17].

Microbiological Analysis: Culture media were prepared according to manufacturers instructions. Eleven grams of each cheese type were weighed aseptically into sterile blender jar (Moulinex 719), then 99 ml of sterile 2 % aqueous solution of sodium citrate warmed at 45°C was added and blended for 2 minutes to make 10⁻¹ dilutions. Tenfold dilutions were made using 0.1% peptone water as diluents. Plate count agar was used for enumeration of total bacteria and psychrotrophic bacterial counts according to FDA [14] and Frank et al. [11], respectively. Mac Con key broth and Brilliant green lactose bile broth were used for enumeration of coliforms and *E. coli* most probable numbers according to Marshall [20]. Mannitol salt agar was used for *Staphylococcus aureus* count according to Rayman et al. [12], while Sabouraud dextrose agar was used for enumeration of yeasts and moulds according to Harrigan and Mc Cance [20].

Sensory Evaluation: The quality of the cheese was judged by 10 untrained panelists for color, flavor, texture and saltiness.

Statistical Analysis: SPSS programme version 10 was used. General Linear Models were used to estimate the effect of storage period on weight loss, chemical composition, microbiological and sensory characteristics of Sudanese white cheese. Duncan’s Multiple Range tests were carried out for mean separation between the treatments.

RESULTS AND DISCUSSION

Results in Table 1 show the weight loss of the cheese (Gibna) stored at room temperature was 27.44±21.83 while the weight loss of cheese kept at refrigerator increased was 13.27±10.17.

Titratable acidity of the cheese samples kept at room temperature was higher (1.18 ± 0.79%) in comparison with that stored at the refrigerator temperature (0.97 ± 0.45%).

Total solids content of cheese stored at refrigerator temperature were significantly (P< 0.001) higher (41.39 ± 3.67%) than those stored at the room temperature (40.94±7.87%).

The protein and fat contents of the cheese samples stored at room temperature were higher (15.01 ± 6.9% and 20.29 ± 9.18%, respectively) than those stored at the refrigerator temperature (14.71 ± 2.21% and 19.73 ± 4.14%, respectively).

Soluble proteins and ash contents of the cheese samples stored at refrigerator temperature (0.55 ± 0.24% and 3.63 ±0.60%, respectively) were higher than that stored at the room temperature (0.46 ± 0.26% and 2.68 ± 1.18%, respectively).

Volatile fatty acids were affected significantly (P<0.001) by the storage temperature. The cheese samples stored at room temperature had higher [14.12 ± 3.09 (0.1 N ml NaOH/100 gm cheese)] VFA in comparison with those stored at refrigerator temperature [10.95±6.25].

Tyrosine and tryptophane contents of the cheese samples stored at room temperature were higher (48.68 ± 5.49 mg/100 gms cheese and 133.08±11.58 mg/100 gms cheese, respectively) than those stored at refrigerator (44.82±5.28 mg/100 gms cheese and 106.86±71.81 mg/100 gms cheese, respectively).
The weight loss of the cheese samples stored at the room temperature was increased to 39.80 ± 7.8% at day 120 then decreased to 26.25 ± 22.03% at day 240 (Table 2). While the weight loss of the cheese (Gibna) kept at the refrigerator temperature increased to 25.13 ± 3.8% at day 240. The higher weight loss was obtained by the cheese stored at the room temperature at day 120.

Titratable acidity of cheese stored at room and refrigerator temperatures increased significantly (P<0.001) with increased storage time from day zero until day 120 for the cheese samples stored at the room temperature and up to day 180 for those stored at refrigerator temperature. Significant differences were found between titratable acidities of the cheese samples from day 60 until day 240.

Total solids content of the cheese samples stored at room temperature increased significantly from 42.38 ± 1.81% at day zero to 46.85 ± 3.9% at day 120 then decreased gradually to 25.24 ± 6.4% at day 240. Whereas the total solids of the cheese kept at refrigerator temperature increased from 42.38 ± 1.81% at day zero to 44.03 ± 3.2% at day 180 then decreased to 35.27 ± 2.1% at day 240.

Protein contents of the cheese samples stored at room temperature significantly (P<0.001) increased from 15.08 ± 0.56% at day zero to 19.99 ± 2.7% at day 120, then decreased to 11.52 ± 7.5% and 9.55 ± 9.9% at days 180 and 240, respectively. The protein contents of the cheese kept at refrigerator temperature decreased from 15.08 ± 0.56% at day zero to 13.20 ± 1.42% at day 60 then the values fluctuated untill day 240.

The fat contents of the cheese samples stored at room temperature increased from 18.90 ± 0.78% at day zero to 25.90 ± 3.9% at day 120 then decreased to 13.38 ± 4.6% at day 240, while those of the samples kept at the refrigerator temperature increased from 18.9 ± 0.78 at day zero to 21.67 ± 5.5% at day 180 then decreased to 21.23 ± 4.6% at day 240.

Soluble protein contents of the cheese samples stored at room temperature significantly (P<0.001) increased from 0.20 ± 0.03% at day zero to 0.66 ± 0.06% at day 120 then gradually decreased to 0.42 ± 0.14% at day 240 and those of the samples kept at refrigerator temperature increased from 0.20 ± 0.03% at day zero to 0.75 ± 0.23% at day 240.

The ash contents of the cheese samples stored at room temperature decreased from 3.35 ± 0.19% at day zero to 2.45 ± 1.5% at day 180 then increased to 2.61 ± 0.60% at day 240. The contents of the cheese kept at refrigerator temperature increased from 3.35 ± 0.19 at day zero to 4.10 ± 0.47% at day 60 then declined gradually to 3.40 ± 0.47% at day 180 and increased to 3.61 ± 0.60% at day 240.

Volatile fatty acids of the cheese stored at room and refrigerator temperatures showed significant (P<0.001) differences from day 60 to day 120. Non-significant variations were also observed in the cheese samples at day 180.

Tyrosine contents of the cheese samples stored at room temperature increased significantly (P<0.001) to 254.08 ± 63.73 mg/100 gms cheese at day 240. The tyrosine contents of the cheese stored at refrigerator increased from 14.38 ± 3.60 at day zero to 207.10 ± 42.4 mg/100 gms cheese at day 240.

Tryptophane contents of the cheese stored at the room temperature significantly (P<0.001) increased in values from 5.55 ± 1.96 at day zero to 88.04 ± 9.10% mg/100 gms cheese at day 240. The values of the cheese stored at refrigerator were lower (46.95 ± 13.90 mg/100 gms cheese) when compared with those stored at the room temperature at day 240.

Total bacterial count of the cheese (Gibna) samples stored at room temperature revealed significant (P<0.001) increase from 7.52 ± 1.10 Log cfu/ml at day zero to 7.65 ± 0.21 Log cfu/ml at day 60 then gradually decreased to 3.43 ± 0.58 Log cfu/ml at day 240. Whereas those of the cheese stored at the refrigerator temperature decreased up to day 120, then rose at day 180 and declined to lower levels at day 240 (Table 3).

Storage temperature significantly (P<0.001) affect coliforms count in the cheese samples during storage. At day 60 they were not detected in the samples kept at room temperature and that was the situation until day 240. Coliforms of the cheese stored in refrigerator decreased significantly at day 180 and completely disappeared by day 240.

Eschericia coli count of the cheese sample at day zero were 2.18 ± 0.17 Log MPN/ml which were absent throughout the remaining storage period. *Eschericia coli* of the cheese stored at the refrigerator temperature decreased from 2.18 ± 0.17 Log MPN/ml at day zero to 0.32 ± 0.18 Log MPN/ml at day 120 then disappeared at days 180 and 240.

Staphilococcus aureus count at day zero was 3.03 Log cfu/ml for the cheese samples. It was completely disappeared in day 60 onward and throughout the storage period for both storage temperatures.

Psychrotrophic bacterial count of the cheese stored at room temperature at day zero was 6.35 ± 0.08 Log cfu/ml. The organisms were not detected at day 60 till day 240. Psychrotrophic bacterial count of the cheese kept at refrigerator temperature increased significantly (P<0.001) from day zero to day 60 then fluctuated before they decline at day 240 (Table 3).
Storage temperature significantly (P< 0.001) affected yeasts and moulds of the cheese. As shown in Table 3, as the storage time increased yeasts and moulds count decreased. Yeasts and moulds counts of cheese stored at room and refrigerator temperatures at day zero were higher than those at day 60. Yeasts and moulds of the cheese kept at the room temperature disappeared from day 120 onwards, while that of the cheese stored at refrigerator temperature decreased at day 240.

The colour of the cheese (Gibna) samples kept at refrigerator temperature (5.82 ± 0.65) was significantly (P< 0.001) better in comparison with that stored at the room temperature as shown (Table 4). The flavour and the saltiness of the cheese samples were not affected by the storage temperature (Table 4). Texture of the cheese kept at refrigerator temperature had significantly higher scores (6.14 ± 1.02) than that of cheese kept at the room temperature (4.66 ± 2.06).

Results in Table 5 illustrate changes in sensory characteristic of the cheese samples as affected by storage temperature. The results indicated that colour scores of the cheese samples kept at room and refrigerator temperatures show non significant variations in the colour scores at day zero and day 60. After 120 days of storage, the colour of cheese samples kept at refrigerator temperature was significantly better (6.26±0.28) than of that stored at the room temperature (5.84 ± 0.55). At day 240, the colour scores of the cheese samples kept at room temperature were significantly higher (6.36 ± 0.47) than of those stored at refrigerator temperature.

The texture scores of the cheese stored at the refrigerator temperature significantly increased (P< 0.001) from 5.32 ± 0.43 at day zero to 6.93 ± 1.45 at day 240, while those of the cheese kept at the room temperature increased from 5.32 ± 0.43 at day zero to 6.13 ± 0.54 at day 120 then gradually decreased to 2.16 ± 2.18 at day 240.

The flavour of the cheese (Gibna) samples during storage were significantly affected by the storage period (Table 5). Significant differences (P<0.001) were observed in the flavour scores within and between the cheese samples from day 60 until day 240. The highest flavour scores were secured by cheese stored at the room temperature at day 120 then followed by the cheese kept at refrigerator temperature which improved in flavour at day 180 (5.41 ± 1.17), while that of cheese kept at the room temperature deteriorated in quality at day 180 and 240.

Storage temperature did not affect the saltiness of the cheese samples significantly (P< 0.05) during storage. The saltiness of the cheese kept at the room temperature increased slightly from 3.20 ± 0.25 at day zero to 3.85 ± 0.92 at day 120 then decreased to 2.00 ± 0.19 at day 240, while that of the cheese kept at refrigerator temperature gradually increased from 3.23 ± 0.25 at day zero to 4.42 ± 2.15 at day 180 then decreased to 3.53±0.77 at day 240.

Discussion: Weight loss of the cheese stored at room temperature was higher than that stored at refrigerator temperature. Our findings agreed with those of El Owni and Hamid, [11], Nofal et al. [27] and Nuser [10]. The increase in weight loss of the cheese stored at room temperature could be explained by rapid loss of moisture from the curd due to contraction of curd as a result of lactic acid development [17,27,12].

The higher acidity of the cheese stored at room temperature might be attributed to increase level of lactic acid due to activation of lactic acid forming bacteria by room temperature, while the low acidity of the cheese stored at refrigerator might be explained by the fact that low temperature inhibited growth and activity of lactic acid bacteria consequently lowering the rate of acid development [17,27].

The increase in total solids content of the cheese stored at refrigerator temperature might be due to inhibition of proteolytic and lipolytic activities of microorganisms by low storage temperature. During the storage period from day zero to day 120 the total solids content of the cheese stored at room temperature were higher probably due to low moisture content as a result of high acidity of the cheese [34,938].

The increase in crude protein contents of the cheese stored at room temperature could be due to low moisture content and high acidity in the curd which inhibited the growth of proteolytic bacteria, while the low crude protein contents of the samples in the refrigerator were possibly attributed to absorption of high level of moisture by the curd [19,17,27].

The high fat contents of the cheese samples stored at room temperature could be attributed to the loss of degradation products in the pickling whey [21,27,2].

The results in this study regarding soluble protein contents were in accordance with the findings of El Owni and Hamid[11], Nuser [10] and Abdalla [1], who reported that the decrease of protein content during storage was the direct result of protein degradation leading to formation of water soluble compounds. The higher soluble protein contents of the cheese stored at room temperature during early stages of ripening could be due to continuous proteolysis in the cheese proteins [11] while the high soluble protein contents of the cheese samples stored at the refrigerator temperature at latter stages was possibly due to increased proteolytic activity of psychrotrophic bacteria at low storage temperature[12].
Table 1: Effect of storage period and temperature on chemical composition of the processed white cheese (Gibna Bayda) during storage.

<table>
<thead>
<tr>
<th>Storage period</th>
<th>Weight loss (%)</th>
<th>Titration acidity (%)</th>
<th>Total solids (%)</th>
<th>Crude protein (%)</th>
<th>Fat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>CT</td>
<td>RT</td>
<td>CT</td>
<td>RT</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.39 ± 0.08</td>
<td>0.39 ± 0.08</td>
<td>42.38 ± 1.81</td>
</tr>
<tr>
<td>60</td>
<td>36.95± 10.3</td>
<td>8.35± 5.4</td>
<td>1.51± 0.59</td>
<td>6.66± 0.21</td>
<td>49.47± 3.2</td>
</tr>
<tr>
<td>120</td>
<td>39.0± 7.8</td>
<td>12.7± 3.9</td>
<td>1.55± 0.3</td>
<td>0.92± 0.2</td>
<td>48.6± 3.9</td>
</tr>
<tr>
<td>180</td>
<td>34.2± 21.7</td>
<td>20.1± 8.4</td>
<td>1.46± 0.9</td>
<td>1.55± 0.9</td>
<td>38.9± 23.8</td>
</tr>
<tr>
<td>240</td>
<td>26.2± 22.0</td>
<td>25.1± 3.8</td>
<td>1.00± 1.0</td>
<td>1.33± 0.14</td>
<td>25.2± 6.4</td>
</tr>
</tbody>
</table>

Level of significance ***

In this and the following tables, mean values bearing different superscripts within rows are significantly different (P < 0.05).

RT = Room temperature (35-37°C)
CT = Refrigerator temperature (7°C)
*** = Significant (P < 0.001).

Table 2: Effect of storage period and temperature on microbiological quality of white cheese (Gibna Bayda)

<table>
<thead>
<tr>
<th>Storage period in days</th>
<th>Microbiological analysis</th>
<th>Total bacterial count (Log cfu)</th>
<th>Coliforms count (Log MPN/ml)</th>
<th>E. coli count (Log MPN/ml)</th>
<th>Staph. aureus count (Log cfu/ml)</th>
<th>Psychrotrophic count (Log cfu/ml)</th>
<th>Yeasts and molds count (Log cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RT</td>
<td>CT</td>
<td>RT</td>
<td>CT</td>
<td>RT</td>
<td>CT</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td>7.52± 1.10</td>
<td>7.52± 1.10</td>
<td>4.04± 1.05</td>
<td>4.04± 1.05</td>
<td>2.18± 0.17</td>
<td>2.18± 0.17</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>7.65± 0.21</td>
<td>7.47± 0.21</td>
<td>ND</td>
<td>2.25± 0.15</td>
<td>ND</td>
<td>1.49</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>6.51± 0.72</td>
<td>6.9± 1.56</td>
<td>ND</td>
<td>0.48± 0.88</td>
<td>ND</td>
<td>0.32± 0.18</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>4.97± 2.94</td>
<td>7.9± 0.63</td>
<td>ND</td>
<td>0.28± 0.51</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>3.43± 0.58</td>
<td>7.5± 0.76</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Ash contents of the cheese stored at room temperature were lower than those stored at refrigerator temperature (Tables 2). These results were in agreement with the findings of Abdalla (1) and Bilal (5), who found that the ash contents of the cheese stored at the refrigerator temperature were higher than those stored at room temperature. That was attributed to absorption of salt by the curd at the low storage temperature (39,27,36).

Volatile fatty acids of the cheese samples stored at room temperature were higher than those stored at the refrigerator temperature. That was probably due to the rapid lipolysis in fats at high temperature, while, the low VFA at the refrigerator temperature might be attributed to suppression of lipolytic agents by the low storage temperature (23).

Tyrosine and tryptophane contents of the cheese at room temperature were higher than those stored at the refrigerator temperature. These results confirmed the findings of Nofal et al. (29) who reported that low temperature (7°C) causes inhibition in the growth of microorganisms, hence lowering the rate of protein decomposition. Similar results were reported by Coppola et al. (10), who stated that storage of cheese at low temperature and high salt content decreased the protein degradation. The higher total bacterial count of the cheese samples stored at room temperature compared to those stored at refrigerator temperature might be due to the effect of high storage temperature on the acceleration of cheese ripening and the number of mesophilic bacteria increased, while those of cheese stored at refrigerator temperature causes inhibition in growth of thermophile and mesophile organisms.

Coliforms were not detected in the cheese samples kept at room temperature because of the high level of acidity which contributed in suppression of their growth (5). In cheese stored at refrigerator temperature coliforms decreased gradually till day 180 then completely disappeared at day 240. This could be due to the fact that coliforms could grow at refrigerator storage and decrease in number as storage time progress because of the low pH in the cheese (22).

Low storage temperatures slow down both the bacterial and biochemical reaction (15). The decrease in E. coli count of the cheese samples stored at refrigerator temperature from day zero to day 120 could be due to the effect of low temperature and increased acidity of the cheese. From days 180 to 240 E. coli were not detected possibly due to complete inactivation of E. coli by high level of lactic acid in the cheese samples. The results in this study were in agreement with those of Hamid and El Owini (18) and Park et al. (31).

Staphylococcus aureus was found only at day zero, it was not detected throughout the storage period. That was probably due to their low initial numbers in the cheese which was not expected to survive the high acidity during storage (23,38).

Psychrotrophic bacteria were not detected in the cheese samples stored at room temperature. That was possibly attributed to the effect of storage temperature on the psychrophils (5). Their growth in refrigerator support Nour El Daim and El Zubeir (29).

The reduced growth of yeasts and moulds at room temperature could be due to the unfavourable conditions, which discourage their growth. This supported El Owini and Hamid, (11) Nour El Daim and El Zubeir (29) and Ahmed, (3) who found that yeasts and moulds were not detected in cheese packed in antiacid cans stored at 37°C for period of four months, while those stored at 7°C were decreased from 2.64 Lgo cfu/ml at day zero to 2.15 Lgo cfu/ml at day 15 and was not detected thereafter throughout the the storage period.

The results showed that color scores of the cheese samples stored in the refrigerator was better in comparison with those kept at room temperature. The present findings confirmed those reported by Hamed et al. (16).
Flavor and saltiness scores of the cheese samples were not affected by storage temperature. The non-significant variations in flavor of the cheese samples stored at room and refrigerator temperature might be due to prolonged storage which have reduced variation in flavors and saltiness Nour El Daim and El Zubeir (2009). Hamed et al., (1985) reported that quality of the cheese stored at refrigerator temperature was better than those stored at room temperature.

Colour of the cheese samples kept at room and refrigerator temperatures remained relatively constant from days zero to 60, while those stored at refrigerator temperature improved in colour by day 240.

Changes were observed in texture during storage from day zero till day 120 then decreased in scores. Our results were in agreement with those reported by Nour El Daim, et al. (29) and Hamed et al., (1985). The high texture scores of the cheese kept at refrigerator temperature was probably due to continuous proteolysis in protein contents through the storage period while those stored at room temperature the presence of high level of lactic acids causes suppression in growth of proteolytic agents (20). Flavour of the cheese samples stored at refrigerator temperature was better in comparison with those stored at refrigerator temperature from day zero to day 120. This could be attributed to the effect of high storage temperature on speeding flavour production at early stage of cheese ripening while refrigeration storage causes retardation of lipolytic and proteolytic processes. Saltiness of the cheese samples was not affected by storage temperature during storage. The present results were in agreement with those reported by Nuser (1985). The slight increased in saltiness of the cheese samples stored at refrigerator temperature could be attributed to absorption of salted whey during cold storage.

Weight loss, chemical composition, microbial contents and sensory characteristics of Gibna Bayda were significantly (p<0.001) affected by storage period. Storage of Gibna Bayda samples at room temperature decreased coliform, E. coli, psychrotrophic bacteria, yeast and moulds counts while it increased total bacterial count. Presence in Gibna Bayda of pathogenic microorganisms rise concerns about the safety of this cheese and indicate the necessity of developing specific requirements for quality of raw milk, sanitation and handling. The application of good manufacturing practice and implementation the HACCP requirements will ensure the control of the manufacture process and consequently the safty of the Gibna Bayda.

REFERENCES

