Arsenic Transport in Soil Columns and Ground Water (Case study: Gorgan Site)

Fereshteh Ghomi Avili, Seyed Ahmad Mirbagheri, Amir Hossein Javid

Department of Environmental Engineering, Faculty of Environment and Energy, Tehran Science and Research Branch, Islamic Azad University, Iran

A R T I C L E I N F O

Article history:
Received 11 June 2014
Received in revised form 21 September 2014
Accepted 25 November 2014
Available online 29 December 2014

Keywords:
transport, soil column, ground water

A B S T R A C T

Today, soil and water quality is affected by various pollutants. One of the important chemical pollutants are heavy metals such as Arsenic. Arsenic is a metalloid that its non-allowable values in soil and ground water is a serious threat to human life and has some health problems such as respiratory disorders, lung and kidney risks, mutation and cancer. Following the reports, Golestan province has unauthorized amounts of Arsenic in soil and ground water in some areas and according to importance of the matter, this study was conducted to evaluate the movement of arsenic in soil columns and ground water of Gorgan in both horizontal and vertical dimensions with local distance of 30 cm and time interval of 3 days. For this purpose, 250 liters of distilled water containing concentrations of 0.2 and 0.4 ppm were poured and injected into two pieces of selected lands in Gorgan as pilot. The results of this study showed that in both horizontal and vertical dimensions, Arsenic concentration will decrease within the increasing of distance and time and with respect to the rate of decrease in the concentration of Arsenic in the horizontal dimension, it can be said that Arsenic does not spread in the horizontal dimension of this area.

INTRODUCTION

Arsenic (As) is a notoriously toxic element, ranking twentieth in crustal abundance [1]. It occurs naturally in inorganic and organic forms, such as arsenic acid (H3AsO4) and arseneous acid (H3AsO3) and their dissociation derivatives (H2AsO4 -, HAsO4 2-, H2AsO3 - and HAsO3 2-)arsenites, arsenates, monomethylarsenic acid (MMAA), and dimethylarsenic acid (DMAA) [2]. Inorganic as generally is more toxic and mobile than organoarsenic species, while trivalent arsenite [As(III)] is considered to be more toxic, soluble, and mobile than pentavalent arsenate [As(V)] [3]. Many geophysics-chemical processes such as absorption cause arsenic release from soil and precipitate in underground water. Also many natural inorganic elements such as (NOM) increase arsenic absorbing by ground water. Existence of unauthorized amount of this element causes skin, lung, and kidney cancer as well as many other problems [4].

Modelling of different kinds of contaminant was studied by several researchers, Nasiri (2013) [6], Alemi, et al [7,8], Hutson and Wagenet [9], Ahlrichs and Hossner [10], Mirbagheri [11, 12,13], copoulos, et al [14], Tayfure, et al. [15].

Regarding contaminating soil and ground waters of Golestan province to this toxic element, the purpose of this paper is to addressed the spatial and temporal distribution of arsenic in soil column of Gorgan site.

MATERIALS AND METHODS

In this study, two plots of land with dimensions of 1.5mx2 on the site of wastewater treatment plant of Gorgan city were chosen as pilot. Then a hole was drilled to the length with the width of 1m and depth of 160cm to perform sampling and depths of 30, 60, 90, 120 and 150 cm were marked on the wall.

On the next step, two 250 liters distilled water solution containing concentrations of 0.2, 0.4 mg/l of Arsenic as AS2O3 was prepared and poured on the pilots, after several hours that the solution found the opportunity to penetrate the soil and reach deep down; soil sampling was done in the vertical dimension from the surface, marked depths and bottom of the channel and at the same time in the horizontal widths of 30, 60 and 150 cm.
90 cm from the surface and a depth of 30 cm. Then, the samples with the label including time and local information were transferred to the soil laboratory to determine the relative humidity of soil and prepare it for extraction involves drying, grind and sieve the soil.

In the next step in the Laboratory of Water and Wastewater, 20 g of prepared soil from each sample was mixed with 40 ml of DTPA solution and was placed on a rotary shaker at a speed of 160 rpm for 2 hours. At first the samples was passed through filter paper of 42 mm and then through a syringe filter of 0.45 micrometer to obtain a completely transparent solution for reading by atomic absorption.

All the sampling periods with time interval of 3 days on the days forth, seventh and tenth after pouring the solution, were repeated for both desired concentrations.

RESULTS AND DISCUSSIONS

In the research and before the testing and pouring the desired solution, the characteristics of the area soil and details of its texture for different depths were determined according to the following table.

<table>
<thead>
<tr>
<th>Sand%</th>
<th>Silt%</th>
<th>Clay%</th>
<th>Organic Carbon %</th>
<th>Total saturated acidity</th>
<th>Electric Conductivity EC*10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>41</td>
<td>20</td>
<td>1.5</td>
<td>6.9</td>
<td>8.1</td>
</tr>
</tbody>
</table>

After determining of soil characteristics, the amounts of Arsenic concentration were estimated in local distance of 30 cm and time interval of 3 days in both horizontal and vertical dimensions.

These results indicate that Arsenic concentration have been decreasing in both horizontal and vertical dimensions and on the other hand, concentration decreases at any point with time which is shown in the following diagrams.

![Fig. 1: Concentration of AS for different depths.](image1)

![Fig. 2: Concentration of AS for different depths.](image2)
Fig. 3: Concentration of AS for different horizontal distances.

Fig. 4: Concentration of AS for different horizontal distances.

Fig. 5: Concentration of AS for different horizontal distances.
Conclusion:
In this study, the motion of Arsenic concentration in both horizontal and vertical dimensions over time were assessed. After pouring of concentrations of 0.2 and 0.4 ppm of Arsenic solution on the pilot land, it is found that the measured concentrations on the ground on the first day and for the concentration of 0.2 was approximately equal to 20 times of input concentration and in regards to concentration of 0.4 was equal to 13 times while after 10 days, the concentrations of same points were equal to 14 and 10, respectively. Thus, according to the estimated values and the above diagrams, it was concluded that the concentration of Arsenic at a point decreases with increasing depth, also concentration changes decrease with time. On the other hand, the concentration decreased at a certain depth and also with increasing width distance from the desired place and reached to zero in about a half of meter which it can be concluded that Arsenic was not penetrated in the soil and in horizontal direction. So, one-dimensional model can be used to simulate the movement of Arsenic in soil column and ground water of this area.

REFERENCES
